

ESTUDO DA DENSIDADE DE NUCLEAÇÃO SUPERFICIAL DE VIDROS DE ISOLADORES ELÉTRICOS TRATADOS TERMICAMENTE

THIAGO HENRIQUE SANCHES BOSSA (UNIOESTE), SÂMELA ARAÚJO, NORA DÍAZ-MORA, PAULO CÉSAR SOARES, CARLOS MAURICIO LEPIENSKI.

thiagohenriquesb@yahoo.com.br - UNIOESTE

Uma vez que em estudos realizados no Laboratório de Materiais Unioeste / PTI comprovou-se um aumento da resistência mecânica de vidros de isoladores elétricos com superfícies parcialmente cristalizadas, propõe-se neste trabalho estudar quantitativamente a cinética de cristalização superficial nesse vidro. Pretende-se comparar os resultados obtidos com aqueles da literatura para outros vidros de silicatos [1-4] e correlacionar posteriormente com resultados sobre sua dureza mecânica. Foi determinada a incidência de nucleação de cristais por foto de microscópio (lente de aumento 40x) em função do tempo (Ns/sf vs t) em amostras de um vidro utilizado para a fabricação de isoladores elétricos utilizados nas linhas de transmissão de alta tensão de composição aproximada

62%SiO2-11%CaO-10%Na2O-7%K2O-5%Al2O3. As amostras analisadas foram fundidas em 1450 °C. As amostras foram polidas mecanicamente com CeO2 e Al2O3 a fim de propiciar o aumento da cristalização superficial [5-6] quando tratadas em diferentes tempos em temperatura constante de 648°C. As amostras foram analisadas sob luz refletida em microscópio ótico. A densidade de nucleação de cristais nessas superfícies foi obtida.

isoladores, cristalização superficial, densidade de cristais

Introdução

O fenômeno da cristalização superficial vem sendo amplamente estudado em diversos sistemas vítreos. Dentre os sistemas vítreos citados com maior freqüência na literatura se destacam os vidros de silicatos [1-4]. No intuito de contribuir com pesquisas de melhoramento das propriedades de materiais vítreos, utilizados principalmente no setor elétrico, o grupo de Materiais da UNIOESTE - Foz do Iguaçu, vem desenvolvendo diversos estudos focados em isoladores de vidro de extra alta tensão (EAT) utilizados em linhas de transmissão de 500 e 750 KV para corrente contínua [5-6]. Foi verificado que muito embora a incidência de nucleação em amostras polidas CeO₂ seja maior daquela apresentada por amostras polidas com AI₂O₃ e em amostras sem nenhum polimento, em todos os casos a nucleação não é influenciada pelo tempo de tratamento. Desta forma, e a exemplo do que comportamento apontado pela literatura para outros vidros de silicatos, não é possível para um vidro utilizado para a fabricação de isoladores elétricos utilizados nas linhas de transmissão de obter-se uma velocidade de nucleação mensurável.

Materiais e Métodos

Fusão de Vidros: Após quebra de um isolador, amostras selecionadas foram submetidas ao processo de refusão, em forno MAITEC á cerca de 1450°C, a fim de obter amostras em formato retangular e plano, para viabilização de testes posteriores.

Preparação de Superfície por Polimento Mecânico: As amostras foram polidas com dois tipos de óxidos com a finalidade de verificar o aumento da cristalização superficial em função do tipo de dopante depositado.

Tratamento Térmico: as amostras preparadas como descrito acima, bem como amostras sem polimento, foram tratadas simultaneamente em forno tubular (controle de temperatura \pm 4°C) em diferentes tempos na temperatura de 648°C.

Contagem dos cristais: as amostras foram fotografadas pela câmera do microscópio ótico e os cristais presentes na superfície foram contados manualmente, estipulando assim a

densidade de cristais de cada superfície.

Resultados e Discussão

Figura 1 - Amostra sem polimento tratada por 48h (lente de 40x).

Figura 2 - Amostra polida com Al2O3 por 48h (lente de 40x).

Figura 3 - Amostra polida com CeO3 tratada por 48h (lente de 40x).

	Amostras		
Tempo de Tratamento (h)	Polidas com óxido de cério	Polidas com alumina	Sem polimento
12	<1	nenhum	nenhum
24	10	30,6	43,5
48	5,8	36,4	108

Tabela 1 - Densidade de cristais por área de foto (Ns/sf) para diferentes amostras e tempos de tratamento.

Segundo os dados obtidos pode-se observar que não parece existir alguma taxa de nucleação mensurável (nucleação heterogênea) devido a alta dispersão amostral. Dentre as

amostras polidas, a alumina propiciou uma densidade de cristais maior que o polimento com cério. No entanto, as amostras polidas com cério apresentaram um tamanho médio de cristais maior que os outros dois tipos de amostra para um mesmo tempo de tratamento.

Conclusões

Verifica-se que a nucleação cristalina é totalmente heterogênea para a variação dos tempos de tratamento assim como outros vidros de silicatos segundo literatura. Segundo trabalhos anteriores, o cério é o que proporciona maior dureza mecânica, porém, neste trabalho encontrou-se uma cristalização inferior quantitativamente que outros tipos de polimento. Assim, faz-se necessário uma continuidade deste estudo analisando também o tamanho do cristal, pois esta característica pode também estar influenciando na dureza mecânica destes vidros.

Agradecimentos

Itaipu Binacional

Laboratório de Materiais - Unioeste/PTI

Departamento de Física - UFPR / CNPq

Revisão Bibliográfica

- 1. ZANOTTO, E.D., FOKIN V.M Surface and volume nucleation growth in TiO₂ -cordierite glasses *Journal of Non-Crystalline Solids*, 1999, 246, 115 -127.
- 2. MÜLLER, R., ZANOTTO, E.D., FOKIN V.M Surface Crystallization of silicate glasses: nucleation sites and kinetics Journal of Non-Crystalline Solids, 2000, 274, 208 -231.
- 3. ZANOTTO, E. D. Surface crystallization kinetics in soda-lime-silica glasses *Journal of Non-Crystalline Solids*, 1991, 129, 183-190
- 4. Díaz-Mora, N. Cristalização Superficial em Vidros de Cordierita: Morfologia e Cinética.Ph D. Tesis, São Carlos, 1994.
- 5. Castilha, R. Faesarella, A.S. e Díaz-Mora V. N, "Estudo Preliminar do aumento da resistência Mecânica de Isoladores de Vidro via Cristalização Superficial", X ERLAC Décimo Encontro Regional Latino Americano da CIGRE. X/PI-15.2. Puerto Yguazú Argentina, 18-22 maio de 2003.
- 6. ARAUJO, S., Díaz MORA, N., Mikowski, A., Soares Jr., P.C., Lepienski, C.M. Effect of Surface Crystallization on the Mechanical properties of glass insulators. In: ABSTRACTS OF III International Simposium on Non-Crystalline Solids and VII Brazilian Simposium on Glass and Related Materials, 2005, Maringá. III International Simposium on Non-Crystalline Solids and VII Brazilian Simposium on Glass and Related Materials, 2005.